

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

October/November 2024

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

DC (PQ) 337015/1 © UCLES 2024

[Turn over

BLANK PAGE

2

© UCLES 2024

The sequence u_1 , u_2 , u_3 , ... is such that $u_1 = 4$ and $u_{n+1} = 3u_n - 2$ for $n \ge 1$.

3

Prove by induction that $u_n = 3^n + 1$ for all positive integers n .	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

9231/12/O/N/24

2 The line l_1 has equation $\mathbf{r} = \mathbf{i} + 3\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} - 4\mathbf{k})$.

The plane Π contains l_1 and is parallel to the vector $2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$.

(a)	Find the equation of Π , giving your answer in the form $ax + by + cz = d$.	[4]
		••••••
		•••••

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

The line l_2 is parallel to the vector $5\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$.

	Find the acute angle between l_2 and Π .	
•		
•		••••••
•		••••••
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
		•••••
		•••••
•		••••••
•		••••••
•		•••••

5

3 It is given that

$$\alpha + \beta + \gamma + \delta = 2,$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} = 3,$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} + \delta^{3} = 4.$$

(a)	Find the value of $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Find the value of $\alpha^2 \beta + \alpha^2 \gamma + \alpha^2 \delta + \beta^2 \alpha + \beta^2 \gamma + \beta^2 \delta + \gamma^2 \alpha + \gamma^2 \beta + \gamma^2 \delta + \delta^2 \alpha + \delta^2 \beta + \delta^2 \gamma$	·. [3]
		• • • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • • •

(i)

(c) It is given that α , β , γ , δ are the roots of the equation

$6r^{4}$	$12r^3$	$+3x^{2}$	+2r	+6=	= 0
0λ $-$	$1 \angle \lambda$	$\neg \supset \lambda$	$\top \angle x$	T U -	– v.

7

Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[3]
	••••••••••
	••••••••••
	••••••••••
	••••••••••
Till 1 2 5 25 5 25	
Find the value of $\alpha^5 + \beta^5 + \gamma^5 + \delta^5$.	[2]

(ii)

4 The matrices A, B and C are given by

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 5 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & -2 \\ -1 & 3 \\ 0 & 0 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} -2 & -1 & 1 \\ 1 & 1 & 3 \end{pmatrix}.$$

(a)	Show that $\mathbf{CAB} = \begin{pmatrix} 3 & -7 \\ -9 & 3 \end{pmatrix}$. [3]
(b)	Find the equations of the invariant lines, through the origin, of the transformation in the x - y plane represented by CAB . [5]

Let $\mathbf{M} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

(c)	Give full details of the transformation represented by \mathbf{M} .	[2]		
		•••••		
(d)	Find the matrix N such that $NM = CAB$.	[3]		
		•••••		
		•••••		

(a)

and S_n in terms of n , x and the function f .	[2]

(b) Given that $f(r) = \ln r$, find the set of values of x for which the infinite series

is convergent and give the sum to infinity when this exists.

$$u_1 + u_2 + u_3 + \dots$$

 · • • • • • • • • • • • • • • • • • • •
 •

•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •••••

© UCLES 2024

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

[3]

Ш								
Ш								
Ш								
ш								

(MF 19) 10 11	ind $\sum_{n=1}^{N} S_n$ in ter	ms of N. Fully	y factorise y	our answer.		
	n-1					
•••••	•••••	•••••		•••••	•••••	•••••
		•••••				
•••••	•••••			•••••	•	•••••
•••••	•••••		•••••	•••••		
•••••	•••••		•••••	•••••	•••••	•••••
					•••••	
	•••••	•••••			•••••	•••••
		•••••			••••	
•••••	•••••	•••••		•••••	••••••	•••••
						•••••
•••••					•••••	•••••
		•••••				
	•••••	•••••			•••••	•••••
•••••	•••••	•••••		••••••	•••••	•••••
		•••••				•••••
•••••		•••••		•••••	•••••	••••••
		•••••				


The curve C has equation $y = \frac{x^2 + 3}{x^2 + 1}$.

(a)	Show that C has no vertical asymptotes and state the equation of the norizontal asymptote.	
		• • • • • • • • • • • • • • • • • • • •

(b)	Show that $1 < y \le 3$ for all real values of x .	[4]

•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••••	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

(c) Find the coordinates of any stationary points on C. [2]

(d) Sketch C, stating the coordinates of any intersections with the axes and labelling the asymptote.

13

(e) Sketch the curve with equation $y = \frac{x^2 + 1}{x^2 + 3}$ and find the set of values of x for which $\frac{x^2 + 1}{x^2 + 3} < \frac{1}{2}$.

- The curve C_1 has polar equation $r = a(\cos\theta + \sin\theta)$ for $-\frac{1}{4}\pi \le \theta \le \frac{3}{4}\pi$, where a is a positive constant.
 - (a) Find a Cartesian equation for C_1 and show that it represents a circle, stating its radius and the Cartesian coordinates of its centre. [4]

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

- **(b)** Sketch C_1 and state the greatest distance of a point on C_1 from the pole. [3]

The curve C_2 with polar equation $r = a\theta$ intersects C_1 at the pole and the point with polar coordinates $(a\phi, \phi)$.

(c)	Verify that $1.25 < \phi < 1.26$.	[2]
		••••••
(d)	Show that the area of the smaller region enclosed by C_1 and C_2 is equal to $\frac{1}{2}a^2\left(\frac{3}{4}\pi + \frac{1}{3}\phi^3 - \phi + \frac{1}{2}\cos 2\phi\right)$	
		[7]
	and deduce, in terms of a and ϕ , the area of the larger region enclosed by C_1 and C_2 .	[7]
		,
		·····
		,
		••••••

* 00	* 0000800000016 *				
1	BYSEC				

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

BLANK PAGE

© UCLES 2024

* 000080000019 *

19

BLANK PAGE

* 0000800000020 *

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

